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Abstract

Can network administrative organizations (NAOs) improve networks’ ability to
solve complex social and environmental problems? This is a classical question in
collaborative governance. The public management literature examines collabora-
tive outcomes at either the organization or the entire network level, but has not
addressed “edge level” outcomes to evaluate structured interactions among net-
work actors. Therefore, we investigate outcomes in an inter-jurisdictional area
that reflect collaborative efforts between local governments. Recently, Guang-
dong Province in China enacted the River Chief System, an institutional reform
that mandates the provincial government to establish a NAO to coordinate inter-
city rivers’ management. To assess how well the reform has worked to reduce
pollution, we employ the synthetic control method using monthly water quality
data from 14 river monitoring sites in two neighboring cities. Our results indi-
cate that the reform reduced the inter-jurisdictional river site’s pollution level
effectively by 36% in the following year. This preliminary finding contributes to
the collaborative governance theory and provides new evidence on whether the
NAO model improves the shared outcomes between local governments.
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Introduction

The question, “Is collaborative governance more effective than adversarial or managerial

governance?” (Ansell and Gash 2008, 549) is central to public management. However, com-

bining multiple organizations with different interests into a governance network to achieve

shared goals is difficult (Bodin 2017; Ostrom 2010). Management problems in environ-

mental governance can be described often as interdependent subproblems among network

members (Bodin 2017). Local governments often face complex social and environmental

conditions when governing common pool resources in fragmented jurisdictions. Their or-

ganizational goals may conflict with shared network level goals, and unclear responsibilities

may aggravate free-riding behaviors among them. This collective action dilemma limits local

governments’ ability to achieve shared environmental outcomes and leads adversarial com-

petition. In particular, if each local government prioritizes organizational benefits over the

network-level benefits, the outcomes for all will be worse in the long-term.

After decades of development, public management scholarship has posited that collab-

orative governance is a remedy for free-riding behaviors, and therefore, is an effective tool

to improve network outcomes. Two major research topics have emerged within this intel-

lectual tradition on collaborative governance: (1) Motivation and formation of collaborative

governance, and (2) outcomes of collaborative governance (O’Toole Jr 2015). This article is

consistent with the second topic, which emphasizes the way collaborative governance per-

forms differently in varying social and institutional contexts. In contrast to most studies on

this topic, which are conducted in Western countries, we investigate collaborative governance

and its environmental outcomes in China.

Based upon the premises in the existing environmental management literature, we iden-

tify two theoretical gaps in the discussion on forms of collaborative governance and their out-

comes. First, scholars often treat collaboration as a broad concept and examine its results,

while the treatment of network structure is considered a “black box” (Bitterman and Koliba
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2020, 638). Under different institutional conditions, networks form different structures that

yield highly varied outcomes (Milward and Provan 1998). As Provan and Kenis (2008) sug-

gested, network structures can be summarized as three models: Participant-governed net-

work; lead organization-governed network, and network administrative organization (NAO).

Therefore, investigating each of these network models’ effectiveness is necessary for public

management scholars to study collaborative governance’s outcomes properly.

Second, we lack “edge level” evidence of collaborative outcomes. Most of the outcome

measurements of collaborative governance are either at the organizational or network level.

These units of analysis help us understand each network participant’s productivity and the

entire network ecological system’s effectiveness (Scott 2015, 2016; Yi 2018). However, the

central arenas of collaborative actions in environmental management are cross-boundary

areas that require multiple network members to manage them collectively (Emerson and

Nabatchi 2015). Studying environmental outcomes in cross-boundary areas reflects what

Bryson et al. (2016, 914) referred to as “shared core goals” of collaborative governance that

“...cannot easily be achieved except by collaborating.”

To fill both theoretical gaps, we focus on one specific form of collaboration: The NAO

model, and extend Ansell and Gash’s (2008) question into our research question: Compared

to non-collaborative governance, can the NAO model improve environmental outcomes in

cross-boundary areas?

Our study answers this question by investigating water pollution control in an inter-

jurisdictional river in China. China has a long history of suffering from water pollution as

a trade-off with its economic development, and local governments game and free-ride each

other in environmental governance. In the case of rivers, the inner-city rivers’ water quality

is often better than that in cross-boundary rivers. To resolve this governance dilemma, the

Guangdong provincial government enacted the River Chief System (RCS) at the beginning

of 2018 to improve river management and water quality. Before the RCS was enacted, neigh-

boring cities self-governed inter-jurisdictional rivers. Since the RCS has been implemented,
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the provincial government’s river chief office has become the NAO and coordinates its subor-

dinate city governments’ management of inter-jurisdictional rivers. This institutional reform

provides a unique opportunity to compare the network effectiveness between a fragmented

local governance system and the NAO model.

To evaluate this institutional reform’s effect, we collected water quality data during

2017-2018 from monthly samples of fourteen river quality monitoring sites in the two most

important industrial cities in Guangdong Province: Shenzhen and Dongguan. Thirteen of

our sample river sites are in inner-city locations in either city, and one treated river site

is at the two cities’ inter-jurisdictional boundary. The synthetic control method allows us

to identify the causal relation between the RCS institutional reform and water pollution

control in the inter-jurisdictional river. By comparing the water quality patterns between

this inter-jurisdictional site and its synthetic control counterfactual before and after the RCS

was implemented, we find that the RCS institutional reform improved the inter-jurisdictional

river water’s quality significantly.

Our findings have two major theoretical implications. First, the NAO model is more

effective than is fragmented local governance as a method to govern environmental outcomes

in inter-jurisdictional areas. Second, this study is the first to use inter-jurisdictional natural

resources as the units of analysis to investigate network activities, so our finding adds new

“edge level” evidence to the collaborative governance literature.

Theoretical Rationale

Collaborative Efforts at Network Edges

Do networks really work? Public policy and management scholars have studied networks

seriously for more than two decades (O’Toole Jr 1997; Provan and Milward 2001). When

networks are treated as dependent variables, scholars have conducted research on network

nodes, edges, and entire networks. These studies focus respectively on actors that participate

in network activities (e.g., Leach and Sabatier 2005), connections between network units (e.g.,
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Berardo and Lubell 2016; Dixon and Elston 2020), and networks’ structures overall (e.g., Yi

2018). However, when networks are considered independent variables, the existing literature

has documented network outcomes at only the levels of nodes and entire networks, but has

failed to analyze the middle ground: network edges.

This is a surprising omission because edges constitute connections between network ac-

tors that indicate collaborative efforts directly. Network edge is the path to connect two

actors (Patty and Penn 2017). Different policy areas have no consensus of how to measure

network edges, and we argue that this is one of the reasons that scholars examine network

outcomes in different levels. For example, schools in public education networks are connected

by sharing teaching materials and information, so measuring collaborative outcomes at the

level of network nodes (students’ achievement in each school) is appropriate (Meier and

O’Toole Jr 2003); health providers in public health networks are connected by co-delivering

services to the same patients, so measuring collaborative outcomes at the level of entire

networks (patients’ aggregated outcomes in the network system) is appropriate (Provan and

Milward 1995). In environmental policy networks, common pool natural resources are net-

work edges to connect interlocal governments. Although understanding organizational and

entire network level outcomes are both important, we should extend theoretical discussion on

network activities and their outcomes on natural resources in transboundary areas. Studying

collaborative efforts in connecting areas between two jurisdictions can deepen our knowledge

on how to balance organizational self-interests and collective actions in the broader network

(Provan and Lemaire 2012).

To fill this theoretical gap, we elaborate the theoretical connections between network

activities at the level of edges and their environmental outcomes. In the following sections,

we first use the collaborative governance regime (CGR) framework to demonstrate why

studying collaborative performance at the edge level is important in complex social ecological

systems. Second, we introduce the concepts of models in network governance and explain

the way the NAO model motivates and coordinates network actors to pursue shared goals at
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network edges collaboratively. Finally, we test our hypothesis by connecting the theoretical

foundations of NAOs to our empirical research case: River governance in China.

The Collaborative Governance Regime Framework

Natural resources such as rivers and air are distributed across multiple political jurisdic-

tions. Given this environmental context, collaborations to achieve shared core goals among

local government authorities are required to overcome the collective action dilemma. Net-

work scholars use “regime” to describe the complex social ecological systems associated with

inter-jurisdictional natural resources (Emerson et al. 2012). Accordingly, the CGR frame-

work is designed to analyze the outcomes of collaborative governance embedded in such

systems.

Emerson et al. (2012, 6) defined CGR as “. . . the particular mode for, public decision

making in which cross-boundary collaboration represents the prevailing pattern of behavior

and activity.” If we view inter-jurisdictional environmental issues as collective action prob-

lems in CGRs, the units of analysis of collaborative outcomes should include participant

organizations, the CGRs, and target goals (Emerson and Nabatchi 2015). These three levels

of analysis correspond to the units of analysis in network research: Participant organiza-

tions are network nodes; the CGRs are network edges, and target goals are established for

the entire network. Abundant studies of collaborative performance in environmental gov-

ernance have set their units of analysis on participant organizations (e.g., Bitterman and

Koliba 2020; Scott 2016) and network’s target goals (Scott 2015; Yi 2018). However, we

lack evidence from examinations of CGR’s collective productivity in “...the arena for struc-

tured interactions among its participants” (Emerson and Nabatchi 2015, 726). Indeed, this

level of analysis is central to network governance because network actors are assumed to be

interdependent, and the outcomes of interdependency should be attractive to more public

management scholars (Agranoff 2007).

Using CGRs as the units of analysis is even more critical when studying environmental
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pollution problems in complex social ecological systems: Opportunistic behaviors often occur

in cross-boundary areas, which are the connections and network edges between neighboring

governments. Local governments have responsibilities to reduce environmental contamina-

tion within their jurisdictions, but they lack incentives to control pollution spillovers to their

neighbors. Even worse, local governments may “free ride” their neighbors strategically by

discharging pollutants to them (Konisky and Woods 2010). These “gaming in the bound-

ary” effects demonstrate the existence of adverse inter-jurisdictional externalities, which

occur in many environmental policy areas such as river, air, and wind power (Helland and

Whitford 2003; Monogan III et al. 2017; Sigman 2005). As Bodin (2017, 4) argued, “Ac-

tors do not collaborate with others in management of ecologically interconnected resources

more than would be expected by chance.” If scholars and governments do not develop effec-

tive management tools to mitigate these adverse inter-jurisdictional externalities, adversarial

competitions would eventually lead to what Hardin (1968) referred to as “the tragedy of the

commons.”

Modes of Network Governance

Networks and collaborative governance are often seen as management tools to overcome

collective action dilemmas in managing common pool resources. As we mentioned at the

outset, there are three modes of networks in collaborative governance: Participant-governed

networks; lead organization-governed networks, and the NAO model (Provan and Kenis

2008). Participant-governed networks require high levels of common trust and consensual

goals among network actors, while lead organization-governed networks are more centralized.

In these latter networks, a core network member with sufficient resources and legitimacy to

lead network activities coordinates key decisions (Provan and Kenis 2008), and network

participants share the same goal with the lead organization. Participant-governed networks

and lead organization-governed networks are both common in health and human services.

Organizations in these policy areas often reach consensus that building community capacity
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is essential to deliver services, so the participant-governed networks are feasible (Chaskin

2001). Lead organization-governed networks are applicable when organizations demand that

a core organization manages clients’ flow and resources efficiently (Provan and Kenis 2008).

Among the three modes, the NAO model is the most centralized form and has an external

member (not one of the network participants) that coordinates network activities (Provan

and Kenis 2008). When network participants have little trust in each other and have different

organizational interests, they may not be motivated to participate in voluntary collaboration

or allow a lead organization to coordinate network activities. In such cases, a mandated

external network broker could be a solution to reduce transaction costs in collaboration

(Provan and Milward 2001). Managing common pool natural resources is the policy area

that interlocal network actors often distrust and leads them to compete with each other.

Without proper regulations or collaborative mechanisms, they spillover pollutants to, and

extract resources from, neighboring jurisdictions. Compared to the other two modes, the

NAO model is the most effective tool to achieve network-level competency, and is used often

to address complex inter-jurisdictional problems (Provan and Kenis 2008).

Network Administrative Organization

When interlocal governmental network actors do not have high levels of trust and goal

consensus, the NAO model has several advantages over the fragmented system to reduce free-

riders in cross-boundary areas. These advantages include coordinating formal collaboration,

providing oversight, and allocating resources (Provan and Kenis 2008; Wang et al. 2019).

First, NAOs coordinate and facilitate interorganizational activities to achieve network-

level objectives (Isett and Provan 2005). As a goal-directed approach, NAOs shape policies

to reduce conflicts among network actors, simplify the action process, and formalize coor-

dination mechanisms (Macciò and Cristofoli 2017; Saz-Carranza et al. 2016). The NAO

model’s second benefit derives from its ability to monitor network performance and min-

imize opportunistic behaviors. As a feasible strategy to unify network actors to achieve
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network-level objectives, NAOs often set task standards for actors and evaluate them peri-

odically (Wang et al. 2019). In governing cross-boundary environmental resources, tasks are

often highly interdependent and difficult to accomplish unilaterally. Thus, as a system to

monitor task quality, a fragmented system is favored less than is the NAO model (Provan

and Kenis 2008). Finally, NAOs allocate external resources to subsidize network members,

which improves the incentives and competencies in network-level collaboration (Provan and

Lemaire 2012). NAOs not only provide resources to assist local actors, but also satisfy ex-

ternal demands for networks, such as buffering macro-level environmental shocks, lobbying

and fundraising externally, and building networks’ external legitimacy (Provan and Kenis

2008).

Although the theoretical premises above show NAOs’ effectiveness in managing natural

resources, we lack evidence of its capacity to solve free-riding problems in cross-boundary

areas. To overcome the free-riding problem, the recent RCS reform in China is an attempt

to switch the fragmented system to the NAO model in river governance. This institutional

experiment offers an ideal context for us to compare the effectiveness of the NAO model

and the fragmented system in governing inter-jurisdictional natural resources. Next, we

introduce the environmental management in China

Jurisdictional Fragmentation in China

As Li et al. (2016) suggested, “China can be characterized as a fragmented authoritarian

country.” It has a top-down political structure in which the central government is the pri-

mary policymaker and local governments implement policy. This central-local relationship

is consistent with the classic principal-agent dilemma. The central government controls local

governments by overseeing the environmental performance within their jurisdictions, which

provides the opportunistic structure for local governments to practice free-riding behaviors

in inter-jurisdictional areas (Li et al. 2016). In the following paragraph, we provide two

explanations for this phenomenon.
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First, local officials’ policy motivations derive largely from the hierarchical promotion

system: The centralized cadre system (Anderson et al. 2019), in which local government

officials’ promotions are based upon their performance. This system stimulates interlocal

competition rather than voluntary collaboration, and the competition for promotion has an

adverse side effect on environmental management (Guo and Lu 2019). Although the Chinese

government attempts to improve environmental conditions by including environmental per-

formance in the promotion criteria, this approach ameliorates environmental contamination

only within jurisdictions, and can even aggravate free-riding behaviors in cross-boundary ar-

eas (Cai et al. 2016). Further, high stakes pressure for organizational performance motivates

local governments to game the system and discharge pollutants to neighboring jurisdictions

(Anderson et al. 2019; Zhang and Cao 2015). In river governance, the central government

measures local governments’ performances by reading the pollution index from water mon-

itoring stations. To compete with other governments and win the promotion game, city

governments discharged on average 57% more pollutants to their downstream neighbors

between 1999 and 2010 (He et al. 2020). These competitions destroy trust between local

governments and increase upper-level governments’ difficulties in monitoring local behav-

iors. Thus, local governments are often adversarial and lack sufficient trust and consensus

to collaboratively address environmental problems in cross-boundary areas.

Second, local governments do not have sufficient bottom-up motivations to collabo-

rate with each other in environmental issues. In the Western tradition, local governments’

self-organizing networks originated with a democratic assumption: Local preferences and

reelection pressures motivate their policy actions (Gerber and Hopkins 2011). For example,

two neighboring cities may treat the water pollution problem in a cross-boundary river that

flows between them collaboratively because residents from both sides complain about the

water quality issue. However, this assumption does not apply in many developing countries

with authoritarian governments, where nearly all policy decisions are top-down. In such sys-

tems, higher-level governments appoint local officials, so they are accountable to their higher
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governments, but less responsive to citizens (Li et al. 2016). A recent field experiment in

China that Buntaine et al. (2021) conducted revealed this phenomenon: Higher authority

governments’ oversight reduces water pollution more effectively than citizens’ monitoring.

This study suggests that China’s bottom-up incentive for government action is very limited.

Without a collaborative environment, fragmented local authorities and their opportunis-

tic behaviors have harmed China’s interconnected natural resources continuously over the

past three decades (Zhang et al. 2018). Although the central government is often seen as

the enabling factor to facilitate policy implementation, we suggest that it has less control of

environmental conflicts in inter-jurisdictional areas. With little mutual trust and consensus,

local governments have high transaction costs in forming voluntary collaboration, so the

NAO model with a central broker may be more efficient in policy implementation (Iborra

et al. 2018).

River Chief System: The Mandated NAO Model in China

To solve the jurisdictional fragmentation problem and end the adversarial governance

in managing China’s interconnected natural resources, local governance requires a better

coordination mechanism. The RCS is an institutional attempt to implement the NAO model

in China that appoints the leading officials in higher governments as “river chiefs” for inter-

jurisdictional rivers. River chiefs are required to establish NAOs: the river chief offices,

which work closely with their subordinate local governments and coordinate river quality

management with multiple sectors and agencies (Liu et al. 2019).

The river chief offices correspond to the definition of NAO in managing river gover-

nance networks. According to Provan and Lemaire (2012, 640), the NAO model “...may be

formally established and/or mandated through a top-down process.” Unlike a fragmented

local system, the NAO model includes an external member that governs the network. In

public-sector networks, this external member is often the “. . . central, local administrative

entity” that supervises, coordinates, and integrates the collaborative actions among network
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members (Provan and Milward 2001, 419). River chief offices are created by upper-level gov-

ernments and serve as the external coordinator of local government networks. They do not

implement local services or policy regulations directly, but coordinate local governments’

network activities. As Kenis and Provan (2009, 448) suggested, “Government run NAOs

are generally set up (by mandate) when the network first forms, to stimulate its growth

through targeted funding and/or network facilitation and to ensure that network goals are

met.” Accordingly, the river chief offices change fragmented local governance networks to

highly centralized forms designed to achieve the network goals that improve water quality

in inter-jurisdictional rivers (Wang et al. 2019).

Given these characteristics, the RCS uses the unique top-down mandated approach to

establish external brokers: river chief offices to coordinate river governance networks. Its

implementation also follows the Chinese approach to experimental governance. This inno-

vation can be traced back to 2007, the time of the water supply crisis in Wuxi City, Jiangsu

province (Wang and Chen 2020). An explosion of blue algae in Taihu Lake (a large lake that

spanned multiple counties’ boundaries) forced the Wuxi municipal government to rearrange

its management model, which coordinated county and district governments to control the

water pollution collectively . Since then, the central government has recommended the RCS

to other areas. At the end of 2016, 16 of 31 mainland Chinese provinces had adopted the

RCS fully or in part. River chiefs have been appointed to four different governmental levels

(from high to low): Provincial, city, county, and district (Wang and Chen 2020). Provincial

heads are general chiefs for all inter-city rivers in the region, and chief executives of cities,

counties, and districts are river chiefs for their own jurisdictions. The government lead-

ers and their departmental agencies form the river chiefs’ offices and manage subordinate

intergovernmental networks.

The key mechanisms of the RCS reflect the NAO model’s major advantages in coor-

dinating formal collaboration, performing oversight, and allocating resources. First, river

chiefs coordinate formal collaborations among local governments. They hold regular meet-
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ings with lower-level government leaders and coordinate actions directly among other depart-

mental agencies, such as the water affairs bureau, environmental protection, agriculture, land

and resources, and financial departments (Liu et al. 2019; Wang and Chen 2020). Formal

collaborations have proven to be important mechanisms of NAOs that improve networks’

capacity. For example, Macciò and Cristofoli (2017) used regular meetings and standard

operating rules to measure formalized coordination mechanisms in Switzerland’s homecare

networks, and found that these mechanisms enhanced network endurance and performance

significantly. Similarly, a study of Australian bushfire planning (Brummel et al. 2012) con-

ducted demonstrated the importance of mandated collaboration in facilitating organizational

representatives’ communication. Through the mechanism of formal collaboration, local gov-

ernments’ responsibilities in inter-jurisdictional rivers become clear, communication between

local governments increases, and most importantly, the RCS consolidates each CGR’s shared

core goals.

Second, the RCS improves the mechanism of performance oversight. Every river receives

a water pollutant reduction target. River chiefs monitor their subordinate rivers’ annual per-

formance and adjust the targets in the following year (She et al. 2019). The RCS also surveys

residents’ opinions about water quality near their residences and encourages them to report

pollution on the part of firms or government entities (Wang and Chen 2020). For example,

the river chief office provides an online billboard for residents to upload daily information

about their observations of the river. These performance oversight activities reflect Provan

and Milward’s (2001, 418) idea that “. . . NAO is both agent of the community and the prin-

cipal of the network participants.” The river chief offices’ performance oversight differs from

the central government’s traditional oversight. In the RCS, the performance information is

not only a criterion for promotion or punishment, but is used to revise future management

plans as well. As the principals that engage strongly with agents in the performance man-

agement process, the river chief offices fill the principal-agent information gaps and restrict

opportunistic behaviors.
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Third, the river chief offices provide resources to help subordinate governments manage

rivers, and often have a special fund that supports the implementation of water pollution

reduction measures (She et al. 2019). In addition, they may also invite university professors

to serve as external experts and participate in the river management plan design and imple-

mentation stages (Li et al. 2020). The NAO model’s advantage in resource allocation has

been examined in other contexts. For example, Whetsell et al. (2020) found that the model

enhanced pooling resources and reduced cooperation costs for innovation in the US semi-

conductor industry. Similarly, Bitterman and Koliba (2020) found that the state-established

NAO enhanced local government networks’ ability to allocate funds, which therefore im-

proved their environmental performance. Taking advantage of these insights, the RCS’s

capacity to allocate resources reflects the NAO model’s advantage in solving “. . . external

demands and needs are being faced by the network” (Provan and Kenis 2008, 240).

The advantages of the RCS described above demonstrate its ability to mitigate the

transaction costs of participating in collaboration by reducing information asymmetry, task

complexity, and power asymmetry (Hindmoor 1998; Williamson 1981). Formal collabora-

tion and regular meetings with local governments reduce information asymmetry, and these

mandated mechanisms help local governments forge contracts and achieve common goals.

Performance oversight reduces collaboration risks from task complexity and provides goal

guidance. Finally, resource subsidies balance power asymmetry between local governments

and provide external support that stabilizes the network.

In summary, river chief offices are NAOs that “. . . are committed to network-level goals

and have a strategic involvement with the network as a whole” (Provan and Kenis 2008,

240). Several studies have shown the RCS’s contributions in improving river water quality

(Liu et al. 2019; She et al. 2019; Wang and Chen 2020). However, these studies focused on

water quality within jurisdictions, such as counties and cities, but did not capture the RCS’s

core goal: water pollution reduction in inter-jurisdictional rivers. Therefore, we conduct a

case study of inter-jurisdictional river governance in China to test the following hypothesis.
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Hypothesis: When local governments collaborate with each other under the NAO

model, the network (compared to a fragmented system) governs environ-

mental outcomes in inter-jurisdictional areas more effectively.

Empirical Strategy

Case Study: Maozhou River between Dongguan and Shenzhen

Although the RCS has been implemented in many provinces, it is technically difficult

for researchers to conduct a large-scale comparison of water quality between inter- and

inner-jurisdictional rivers, largely because rivers are often interconnected. Hence, treatments

on inter-jurisdictional rivers may spillover to inner-jurisdictional rivers. To overcome this

research barrier and investigate collaborative governance’s effects on water pollution control

causally, we find a special case: Maozhou river, which flows between the two major industrial

cities in Guangdong Province: Dongguan City and Shenzhen City. The Maozhou river is

located farthest downstream, close to the marine outfall, and other inner-city rivers in both

cities are farther upstream (see Figure 1). This special case improves our research’s internal

validity, because a downstream river’s water quality is unlikely to affect that of upstream

rivers.

This case’s scope has limitations, but it still serves as a valuable reference for other

inter-jurisdictional rivers in China. As one of the most important economically-developed

provinces, Guangdong’s economy is greater than that of any other province in China. Fur-

ther, Dongguan and Shenzhen are in the center of the Pearl River Delta Economic Zone,

which is the hub of China’s high-tech and manufacturing industries. While on the one hand,

this region has led China’s economic advancement in the past 40 years, on the other, it has

suffered severe environmental costs in air and water pollution for a long while (Yi et al.

2018).
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Figure 1: Study Area
Note: The red dot is the inter-jurisdictional Maozhou river site, black dots are the inner-jurisdictional
control river sites. The yellow area is Changan district, and the pink area is Shajing district. Light
blue lines indicate the sample watersheds and black lines are Shenzhen and Dongguan’s jurisdictional
boundaries.

In recent years, both cities’ governments have declared their intentions to solve their

water pollution problems, and their inner-city water quality conditions have improved con-

tinuously. However, the water treatment of the inter-jurisdictional Maozhou river continues

to underperform, primarily because of industrial pollution discharge. Both Dongguan and

Shenzhen have many polluting plants that have been regulated to limit their discharge into

inner-city rivers, but can still discharge into the inter-city Maozhou river, in which the man-

agerial responsibility has been unclear. Even worse, from the Figure 1 map we can see that

Maozhou river is located downstream and connects to the marine outfall, where ultimately,

the pollution is discharged directly into the ocean.

The RCS has been implemented formally in Guangdong Province since the beginning of

2018, and the provincial river chief office has coordinated river management with both cities

since then. To resolve free-riding behaviors in both cities’ pollution discharge into Maozhou

river, the provincial river chief office organized monthly meetings with both municipal gov-

ernments and county and district governments adjacent to the river. The meetings clarified
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government authorities’ responsibilities, shared information among network members, and

coordinated managerial tasks in each period. The major enforcement goal to reduce water

pollution was to regulate polluters. Thus, both municipal governments and their subordinate

agencies, counties, and districts inspected those polluters’ discharge behaviors collaboratively

and negotiated with them to identify alternative environmentally sound solutions. Moreover,

the provincial river chief office provided financial resources for both cities to coproduce green

areas along both banks of the river, which encouraged sustainable development for both cities

in that surrounding area.

The 2018 institutional reform affected the inter-city Maozhou river’s management model

significantly, but theoretically, had no effect on other inner-city rivers, which creates a natural

counterfactual for us to compare. City, county, and district-levels’ RCSs have been imple-

mented in 10 cities in Guangdong Province since 2015, including Shenzhen and Dongguan,

so inner-city rivers’ governance responsibility had been clarified by then. The institutional

reform shifted the responsibility to manage inter-city rivers from neighboring cities to the

provincial river chief office beginning in 2018 (Wang and Chen 2020). Since then, every city

can be viewed as a single policy actor in the network, with the provincial government as the

NAO. This institutional change provides us a unique opportunity to study the provincial

government, Maozhou river, and the cities on both sides of the river as an integrated CGR.

Data

Given the short implementation period to date, it is difficult for researchers to collect

large-N water performance data for inter-jurisdictional rivers in Guangdong Province. Thus,

to obtain a preliminary understanding of the RCS’s treatment effect on the cross-boundary

area, we collaborated with the Guangdong Research Institute of Water Resource and Hy-

dropower (GRIWRH) to obtain two years (2017-2018) of monthly river water quality panel

data from the two cities.

These data include three major water quality indicators: Chemical oxygen demand
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(COD); ammonia nitrogen (NH3-N), and total phosphorus (TP) from fourteen rivers’ water

monitoring sites in both cities. Among them, thirteen sites are located in the inner-city

(seven in Shenzhen, six in Dongguan). In addition, one river site, the Maozhou river in

the Gonghe village monitoring station, lays on the inter-jurisdictional boundary between

Shenzhen and Dongguan. All fourteen rivers have severe water pollution problems and are

located in close proximity within the greater Maozhou watershed area. In 2002, the Ministry

of Environmental Protection categorized water quality performance into six levels (from good

to bad): I, II, III, IV, V, and poor V (Yan et al. 2015). The provincial government classified

all rivers in our sample as level poor V water. Thus, they all have the common target to

improve water performance from level poor V to V. Specifically, COD, NH3-N, and TP

should be less than 40 mg/L, 2.0 mg/L, and 0.4 mg/L, respectively.

The Synthetic Control Method

The synthetic control method that Abadie et al. (2010, 2015) developed matches our

time-series, cross-sectional water quality data perfectly, in which we have only one treated

unit and multiple control units in the sample.

In small-N case studies, the comparability among different cases is compromised by

likely unobserved confounding variables, and treated and control units’ characteristics match

well rarely. Hence, it is difficult to conduct statistical falsification. The synthetic control

method is a remedy for this problem, and it has become popular in environmental studies in

recent years (e.g. Bueno and Valente 2019; Maamoun 2019; Sun et al. 2019). This method’s

major property is that it combines all comparative control units and weights them on the

treated unit in the pre-intervention period.

The treated unit in this study is the inter-jurisdictional Maozhou river monitoring site,

while other inner-city river sites in the sample are our control units. After constructing

them as the synthetic Maozhou river site, this synthetic control unit reproduces the treated

unit without the treatment effect in the post-intervention period. Comparing the time-series
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patterns between the actual treated unit and the synthetic control unit after the treatment

assignment is better than simply comparing each unit in the pool (Abadie et al. 2010).

We used both socioeconomic and environmental covariates to construct a weighting

matrix, which made the control units’ characteristics as similar to the treated unit as pos-

sible. With this matrix, we reproduced the synthetic control treated unit that had similar

outcomes in the pre-intervention period. Therefore, the difference between the treated unit

and synthetic treated unit’s outcome indicated the treatment effect. To identify the causal

effect accurately, we minimized the root mean square prediction error (RMSPE) in the

pre-intervention period. Appendix A documents the detailed steps in the synthetic control

method’s causal procedure and the mathematical expression of RMSPE.

The key in the synthetic control method is to have a lengthy pre-intervention period, a

comparable donor pool of control units, a set of time-constant predictors, and an effective

treatment cut-off point (Abadie 2019). The water quality data from 2017-2018 combined

yielded 24 time points in total. Although the RCS was enacted at the beginning of 2018, the

provincial government finalized dividing the inter-jurisdictional rivers’ work arrangement

with its subordinate governments at the beginning of November 2017. Therefore, we use

January to November 2017 as the pre-intervention period. Further, Abadie et al. (2015)

suggested that the donor pool units’ characteristics should be as similar as possible to those

of the treated unit. In this sense, all river sites and their corresponding jurisdictions in our

sample are from two cities in a small region. Thus, we are less concerned about interpolation

biases. In addition, the synthetic control method has the no-interference assumption, which

requires the intervention to have no spillover effects on control units (Abadie 2019). As

mentioned above, it is highly unlikely for the RCS intervention to spill over from the most

downstream treated site to other upstream control sites.
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Measurement of The Water Quality

Using the Ministry of Environmental Protection’s (2002) Environmental Quality Stan-

dards for Surface Water (GB3838-2002), we construct our main dependent variable with the

comprehensive water pollution index (PI) (Liu et al. 2019; Yan et al. 2015). In the following

formula, Ci contains i categories of pollutants (mg/L), and Si represents each pollutant’s

corresponding target standard.

PI =
1

n

n∑
i=1

Ci

Si

In this case, we weight the pollutant values on the level V target standards: PI =

1/3(COD/40 + NH3N/2 + TP/0.4). In addition, we also measure the effect of the RCS’s

implementation on each pollutant separately. Figure 2 displays the PI trends for the treated

unit and the control units’ mean before and after the RCS was enacted (trends for each

pollutant shown in Appendix B).

Figure 2: Trends of PI: Treated Unit versus Average Control Units
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Measurement of Predictors

According to the formal justification, we select valid predictor variables to construct a

synthetic control unit comparable to the treated unit (Table 1). Both the local socioeconomic

and environmental conditions affect river water quality (Scott 2015, 2016).

Table 1: Predictors for the Water Quality

Variable Name Variable Description

Socioeconomic predictors

GDP per capita The 2017 annual Gross Domestic Product per capita in the district
where a river is located (RMB/per capita)

Gov. revenue per capita The 2017 annual government revenue per capita in the district
where a river is located (RMB/per capita)

Gov. expenditure per capita The 2017 annual government annual expenditure per capita in the
district where a river is located (RMB/per capita)

Population density The 2017 annual population/area in the district where a river is
located (10,000 people/1km2)

District water supply The 2017 annual water supply in the district where a river is
located (10,000m3)

Environmental predictors

River flow rate The 2017 annual average water velocity at the water monitoring
site point

Industrial land use Area in the one-kilometer radius circle (km2)
Residential land use Area in the one-kilometer radius circle (km2)
Agricultural land use Area in the one-kilometer radius circle (km2)
Water quality in Spring 2017 The average water quality in January, February and March 2017
Water quality in Summer 2017 The average water quality in April, May and June 2017
Water quality in Fall 2017 The average water quality in July, August and September 2017
Water quality in Winter 2017 The average water quality in October and November 2017

We collect district-level socioeconomic data for each river monitoring site’s location

from Dongguan and Shenzhen’s Statistical Yearbooks. The socioeconomic predictors include

local population, economy size, district water supply, and the local government’s financial

capacity (Konisky and Woods 2012; Scott 2015, 2016; Sun et al. 2019). As a river in the inter-

jurisdictional area, our treated unit provides a challenge in constructing values comparable

to the predictors above. According to the definition of common pool resource, the Maozhou

river at the Gonghe village monitoring site does not belong to either Shenzhen or Dongguan’s

administrative territory, but is located in the center of two similar-sized adjacent districts:

Changan district (area = 97.87 km2, population = 663,800) from Dongguan, and Shajing
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district (area = 66.69 km2, population = 360,300) from Shenzhen. For this natural setting,

we average the values of each of the two areas’ socioeconomic predictors to approximate the

socioeconomic predictors for the unit treated.

We also collect environmental data for each river monitoring site. The annual river

flow rate is obtained from GRIWRH and the authors collected land use data manually

from Google Earth. To measure the local land use condition precisely, we employ the areal

appointment technique with ArcGIS to construct a one-kilometer radius circle and calculate

each water monitoring site’s industrial, residential, and agricultural areas (Konisky and

Woods 2010). In addition, river water quality fluctuates seasonally according to different

weather conditions. Thus, we include the mean values of the water quality in each of the

four seasons in the pre-intervention period.

Table 2: Water Quality Predictor Means in the Pre-intervention Period

Treated Unit Synthetic Unit Donor Sample

GDP per capita 90154.55 91170.05 94896.41
Gov. revenue per capita 4977.57 4968.03 6449.14
Gov. expenditure per capita 5901.28 8347.39 10980.78
Population density 0.62 0.28 0.38
District water supply 7174.00 4079.77 5876.15
River flow rate 10.67 10.75 8.46
Industrial land use 2.26 1.49 1.73
Residential land use 0.13 0.07 0.30
Agricultural land use 0.39 0.16 0.19
Avg. PI in spring 6.10 6.08 4.86
Avg. PI in summer 5.21 5.40 4.35
Avg. PI in fall 3.46 3.61 3.10
Avg. PI in winter 4.75 4.51 3.17

Note: Pre-intervention MSPE = 0.302

Table 2 compares the pre-intervention predictors’ means for the treated river site, the

synthetic treated river site, and the donor sample mean. We can see clearly that the treated

unit’s predictor values are more similar to the synthetic unit than is the donor sample average,

which suggest that our synthetical control weighting is successful. Moreover, these data show

the particularity of our case in China. Our sampling districts have higher GDP per capita

than the 2017 national average (59,660 RMB)1. In addition, industrial land use is the major

1This data is from the website of The World Bank.
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land use in the areas of our sampling river sites. As contrast, industrial and residential

land use are more balanced in general Chinese cities (Liu et al. 2014). Combining these

two regional variables and the level poor V water quality in the sampling rivers, our case

shows the trade-off between manufactural based economic development and environmental

protection, which is a common problem for many economic developed areas in China (Du

and Yi 2021). Therefore, this regional characteristic makes our case salient and have policy

implications to river governance in other regions in China.

Table 3: Weights in the Synthetic Inter-jurisdictional River Site

Unit Name Synthetic Control Weight

DG1 0.056
DG2 0.011
DG3 0.090
DG4 0.000
DG5 0.007
DG6 0.503
SZ1 0.000
SZ2 0.086
SZ3 0.247
SZ4 0.000
SZ5 0.000
SZ6 0.000
SZ7 0.000

Next, we summarize the weights assigned to each river site in the donor pool (Table 3).

These weights describe their similarity to the treated river site according to the socioeconomic

and environmental predictors matrix. In total, all weights sum to one (see mathematic

expression in Appendix A). We label the river sites DG1 to DG6 for the sites in Dongguan

and SZ1 to SZ7 for the sites in Shenzhen. Summing the weights of each control site’s water

quality values, we construct the synthetic treated river site.

Results

The Main Effect of The RCS

Figure 3 displays our main finding on the RCS’s treatment effect in reducing pollution

in the inter-jurisdictional river site. The synthetic inter-jurisdictional river site’s PI is very
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similar to that of the actual treated river site before the RCS is implemented, which indicates

that our predictors achieve a good match between the treated unit and its synthetic control

counterfactual in the pre-intervention period.

Figure 3: Trends of PI: Treated Unit versus Synthetic Treated Unit

After the RCS was enacted, the inter-jurisdictional river site’s water quality improved

immediately, and the river’s PI was 55% lower than its synthetic control unit in December

2017. However, this pollution reduction effect did not remain consistent in the middle of

2018, but increased again to 48% at the end of the year. Water temperature, different human

activities in dry and wet seasons, and the Spring Festival between January and February all

contribute to this seasonal fluctuation of water quality (Crosa et al. 2006; Razali et al. 2020;

Wu et al. 2016). However, these environmental and social factors apply to all river sites

in our sample, so they do not harm the internal validity of this study. If we measure each

pollutant separately, NH3-N and TP show similar patterns, but with different magnitudes

of fluctuation. COD’s pattern does not differ greatly from its synthetic control unit. Details

of each pollutant are provided in Appendix C.

The RCS’s treatment effect overall is sizeable. Figure 4 reports the mean treatment

effect on the treated unit (ATT) during the thirteen months post-intervention (December

2017 to December 2018). We estimate the ATT based upon Appendix A equation (1), which
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is obtained from a t-test of the PI between the treated unit and the synthetic treated unit

in the post-intervention period. This estimation generates our model’s overall effect size.

On average, the PI in the actual inter-jurisdictional river site is 1.22 (36%) lower than its

synthetic control unit (SE = 0.33, p = 0.001). The ATT for each pollutant is reported in

Appendix C.

Figure 4: ATT in the Post-Intervention Period
Note: Bars are 95% confidence intervals.

In-place Placebo Test

Conventional regression-based studies often test hypotheses by comparing results with

the benchmark significance levels, but the small-N synthetic control approach relies on

placebo tests from both in-place and in-time dimensions (Abadie et al. 2010). We reas-

sign the treatment to other control units in the donor pool to see whether they result in

effects similar to that in the inter-jurisdictional river site.

In the in-place placebo test, we reassign the treatment to other control units in the

donor pool to see whether they have effects similar to that in the inter-jurisdictional river

site. Figure 5 shows that the treatment effect of the treated inter-jurisdictional river site

(green line) is greater than that of other river sites with placebo assignments (grey lines).

The distances between these lines and the horizontal dashed line are the differences in value

between each river site and its synthetic control counterfactual. The vertical dashed line
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is the RCS implementation period. Following Abadie et al.’s (2010) recommendation, we

discard four extreme control units because their pre-intervention RMSPEs are more than

twice as high as the treated unit.

Figure 5: PI Gaps in the Actual Treated Unit and Placebo PI Gaps in Control Units

Next, we employ significance tests with the post- and pre-intervention RMSPEratio. Fig-

ure 6 reports the RMSPEratio comparisons between the treated inter-jurisdictional river site

and the others. The result demonstrates that the inter-jurisdictional river site’s RMSPEratio

is at least 1.44 times larger than that of any other control site. Not a single control site’s

RMSPEratio is close to the inter-jurisdictional river site. The larger RMSPEratio value in-

dicates that the water quality difference between the treated and synthetic control unit

increased in the post-intervention period. Therefore, if one assigns the treatment to these

data randomly, the probability of obtaining a RMSPEratio as large as the inter-jurisdictional

river is 1/14 (p = 0.07).

We also rerun the in-place placebo test for each pollutant and obtain a similar result for

NH3-N, but COD and TP fail to pass the p = 0.1 threshold. These results suggest that the

RCS effect is significant for NH3-N, but largely not for COD or TP. We report these results in

Appendix D. Various human activities’ effects and pollutants’ different corresponding target

performances can explain these heterogenous results. COD indicates industrial wastewater,
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Figure 6: PI RMSPEratio of Post-/Pre- Intervention: The Treated and Control Units

NH3-N indicates primarily industrial sewage and domestic wastewater, and TP indicates

largely agricultural pollution from fertilizers (Ministry of Environmental Protection 2002).

Governments can reduce COD and NH3-N by regulating polluting industries. However,

agricultural fertilization is based upon local farmers’ individual behavior. Therefore, reducing

the TP level often requires longer than that of the other two pollutants.

Comparing the reduction in COD and NH3-N, we suggest that the targeted performance

is a moderating variable in our case2. Although we do not find a significant decline in COD, it

is lower than 40 mg/L (the targeted performance) during most of the time points. In compar-

ison, NH3-N experiences a clear decline after the RCS’s implementation, but it had not yet

achieved the targeted 2 mg/L goal at the end of 2018. This heterogeneity demonstrates that

local governments’ collective actions are conditional on pollutants’ targeted performances.

Interlocal collaborations mitigate water pollution continuously until the inter-jurisdictional

river site achieves its targeted performance.

2Most synthetic control studies have only one treated unit and several control units in the sample. Therefore,
it is difficult to involve moderating or mediating variables in the model because of the lack of statistical
power. Rather than adding interaction terms into the model, we adapt Lu et al.’s (2021) strategy to conduct
the pollutant subgroup analysis to discuss the potential moderating variable: targeted performance.
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In-time Placebo Test

The RCS has a rapid effect after it is implemented. To evaluate whether the RCS or

some confounding factors before November 2017 actually determine the pollution reduction,

we conduct an in-time placebo test (Abadie 2019). We rerun the model with the treatment

beginning point assigned to the middle of the pre-intervention period: June 2017. We apply

the same predictors in our main analysis to construct our synthetic control unit, but only

include the PI’s mean values in spring (January, February, and March) and summer (April,

May, and June).

Figure 7: Placebo Time Trends of PI: Treated Unit versus Synthetic Treated Unit

Figure 7 displays the result, which demonstrates two important features. First, we do

not observe a continuously sharp PI decrease from July to November 2017. The random

walk pattern prior to the actual intervention timing allows us to be concerned less about a

pretreatment confounding effect. Second, a clear PI gap between the synthetic and treated

unit emerges around December 2017, and this is the case even when we exclude information

on the actual timing of the RCS implementation. This evidence enhances the credibility

of our estimator of the RCS intervention in November 2017. Although a one-year pre-

intervention period appears to be short, the in-time placebo test offers convincing evidence
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that our synthetic control estimator has potential predictive power (Abadie et al. 2015).

Appendix E reports the in-time placebo tests for all pollutants, which yield results similar

to that of PI.

Discussion and Conclusion

By investigating the way shifting from fragmented local governance to the NAO model

affects water pollution control in a cross-boundary area, we advance our knowledge of collab-

orative governance’s effectiveness. We demonstrate that the NAO model is a better strategy

to improve environmental outcomes. This finding is consistent with Provan and Kenis’s

(2008, 236) view that NAO enhances a network’s capacity to deal with “. . . unique and com-

plex network-level problems and issues.” As we discuss at the outset, river management

often includes social and environmental complexity that a single organization cannot pos-

sibly manage. By formalizing network coordination, performing oversight, and allocating

external resources, the NAO enhances collaborations among network actors and ultimately

improves environmental outcomes.

One goal of our analysis is to provide empirical evidence of the outcomes of collaborative

efforts in the cross-boundary area. To the best of our knowledge, this is the first study in the

collaborative governance literature that uses an inter-jurisdictional natural resource as the

unit of analysis. Our special case overcomes the spillover effect in identification, which has

prevented previous studies from comparing management of inter- and inner-jurisdictional

natural resources. Performance of interconnected natural resources in cross-boundary areas

serves as a bridge between organizational performance and network ecology-level perfor-

mance. Hence, we refer to it as “edge level” evidence. Controlling environmental quality

within a jurisdiction is fundamentally important for every local government, but local gov-

ernments cannot achieve long-term beneficial outcomes for the entire network unless they

coordinate to solve pollution problems on their shared borders jointly. To study why collabo-

rative governance succeeds or fails, we must disentangle network members’ shared outcomes.
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Therefore, our findings contribute to the collaborative governance theory, and provide new

evidence to determine whether the NAO model improves the shared outcomes between local

governments.

While our case study in China offers direct evidence for ways to govern rivers in a com-

plex institutional environment, it has general implications for network governance modes

and their collaborative outcomes as well. As aforementioned, the RCS reflects several of

the NAO model’s advantages in mitigating the transaction costs of collective actions. These

advantages are also established well in other countries. Formal collaboration, including reg-

ular meetings, contract-based agreements between local governments, and facilitating policy

processes, are all strategies used frequently in advanced democracies (Brummel et al. 2012;

Macciò and Cristofoli 2017). The RCS’s performance oversight approach to closing the

principal-agent information gap is also applicable in other countries. In particular, if NAOs

can collect citizens’ opinions on environmental performance actively and use this informa-

tion to motivate local governments’ collaborative behaviors, NAOs would become Provan and

Milward’s 2001 ideal: Agents of communities and principals of subordinate governments. Fi-

nally, RCS’s ability to allocate resources brings external resources to networks and reduces

the power imbalance problem between local governments. The importance of resource sup-

port has been discussed in other cases, such as Vermont’s state-municipal mandated networks

(Bitterman and Koliba 2020) and the United States’ government-led semiconductor industry

networks (Whetsell et al. 2020).

In addition to the theoretical contributions above, we suggest that public management

scholars need to open and explore the “black box” of collaborative structure continuously

as we study network effectiveness. As noted earlier, we must examine not only collaborative

governance as a broad concept, but also observe and compare outcomes between different

network modes from a closer and more rigorous perspective. Therefore, this study’s findings

and limitations provide new research opportunities for scholars of collaborative governance.

With respect to collaborative mechanisms, we encourage network scholars to investi-

29



gate their direct effects on network outcomes. Based upon the aggregated data structure,

this study focuses on detecting the RCS institutional reform’s treatment effect overall, but

is unable to explain several internal mechanisms further, such as formalized coordination,

supervised performance, and external resource allocation. If scholars can develop in-depth

research collaborations with NAOs and be involved in the design of policy implementation,

they can gain closer access to each mechanism and isolate it from other variables in the anal-

ysis. Some studies have conducted surveys and interviews with policy insiders to associate

specific network mechanisms with perceived network performance (e.g., Lubell et al. 2017;

Wang et al. 2019). If survey data can be combined with actual performance measures like

pollution reduction in this study, we could explore collaborative mechanisms and compare

their effects on network outcomes in different network modes further.

To reach conclusions that can be generalized and extend the research scope, we suggest

that future studies collect data over longer periods with larger sample sizes. The existing

literature on collaborative performance often relies on cross-sectional data from comparative

case studies of only a few comparable networks. Although our panel data detect the effect of

network mode change, we focus on only one river governance network in the policy subsystem

with the data available in two years. This research scope is comparably smaller and shorter

than other environmental analysis studies. We expect to see our research design replicated

with multiple inter-jurisdictional river sites over a longer period, in which the network re-

search community can explore the dynamic associations between environmental outcomes

and network evolution/dissolution (Siciliano et al. 2021). Moreover, such augmented data

will allow scholars to discuss network structures’ mediation and moderation effects when the

treatment effects of collaboration may be heterogenous in different conditions.

In addition, cross-cultural studies should be central in public network analysis. In

our Chinese case, the top-down structure and fragmented authoritarian system are unique

attributes that may not be applicable to other countries. River chief offices imposed by senior

governments may have greater power in performance oversight and resource allocation than
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NAOs in other countries. Therefore, we encourage scholars to test our hypothesis in different

institutional environments and compare the structural differences between NAOs in China

and other countries, as a comparative perspective will allow the network research community

to elaborate the collaborative governance theory further.

In a broader sense, this article contributes to the collaborative governance theory in

understanding mandated networks’ effectiveness in governing cross-boundary environmental

resources. Further, using the synthetic control method allows us to overcome the interdepen-

dence problem in network research. Our novel identification strategy and positive evidence

offer new research opportunities to study collaboration outcomes at network edges.
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Macciò, Laura and Daniela Cristofoli. 2017. How to support the endurance of long-term
networks: The pivotal role of the network manager. Public Administration 95 (4):1060–
1076.

Meier, Kenneth J and Laurence J O’Toole Jr. 2003. Public management and educational
performance: The impact of managerial networking. Public Administration Review 63
(6):689–699.

Milward, H Brinton and Keith G Provan. 1998. Measuring network structure. Public Ad-
ministration 76 (2):387–407.

Ministry of Environmental Protection. Environmental quality standards for surface
water (gb3838-2002). https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/

200206/t20020601_66497.shtml 2002.

Monogan III, James E, David M Konisky, and Neal D Woods. 2017. Gone with the wind:
federalism and the strategic location of air polluters. American Journal of Political Science
61 (2):257–270.

Ostrom, Elinor. 2010. Beyond markets and states: polycentric governance of complex eco-
nomic systems. American Economic Review 100 (3):641–72.

O’Toole Jr, Laurence J. 1997. Treating networks seriously: Practical and research-based
agendas in public administration. Public Administration Review pages 45–52.

——. 2015. Networks and networking: The public administrative agendas. Public Adminis-
tration Review 75 (3):361–371.

Patty, John W and Elizabeth Maggie Penn. 2017. Network theory and political science. The
Oxford handbook of political networks page 147.

Provan, Keith G and Patrick Kenis. 2008. Modes of network governance: Structure, man-
agement, and effectiveness. Journal of public administration research and theory 18 (2):
229–252.

Provan, Keith G and Robin H Lemaire. 2012. Core concepts and key ideas for understanding
public sector organizational networks: Using research to inform scholarship and practice.
Public Administration Review 72 (5):638–648.

Provan, Keith G and H Brinton Milward. 1995. A preliminary theory of interorganizational
network effectiveness: A comparative study of four community mental health systems.
Administrative Science Quarterly pages 1–33.

34

https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml
https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml


——. 2001. Do networks really work? a framework for evaluating public-sector organizational
networks. Public Administration Review 61 (4):414–423.

Razali, Azlini, Sharifah Norkhadijah Syed Ismail, Suriyani Awang, Sarva Mangala Praveena,
and Emilia Zainal Abidin. 2020. The impact of seasonal change on river water quality and
dissolved metals in mountainous agricultural areas and risk to human health. Environ-
mental Forensics 21 (2):195–211.

Saz-Carranza, Angel, Susanna Iborra, and Adrià Albareda. 2016. The power dynamics of
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Appendix A Causal Identification

We follow Abadie et al.’s (2010; 2015) steps to demonstrate the synthetic control
method’s causal procedure. First, we have a sample of J + 1 units. J = 1 is the treated unit
and J = (2, ..., J + 1) is the donor pool of control units. All J + 1 units have T = T0 + T1
time points, T0 and T1 are the pre-intervention and post-intervention periods. To construct
the synthetic control unit, we apply a weighting average of samples in the donor pool:
W = (w2, ..., wJ + 1)′ with (0 ≤ wj ≤ 1). To select the best value of W, we match the
synthetic control unit’s characteristics so they are similar to those of the treated unit. To
obtain this, we include X1 (k × 1) vector of time-constant variables for the treated unit in
the pre-intervention period, and X0 as the k × J matrix of the same time-constant vari-
ables for the control units. Then, we can construct the synthetic control unit by minimizing
‖X1 −X0W‖ to obtain the W∗ (between 0 and 1), which minimizes the root mean square
prediction error (RMSPE) in the pre-intervention period. The interpretation of RMSPE is
the lack of fit between the treated unit and its synthetic control part in the pre-intervention
period: RMSPE = ( 1

T0

∑T0

t=1(Y1t −
∑J+1

J=2w
∗
jYjt)

2)
1
2 . For more discussions of the RMSPE,

please read (Abadie et al. 2015).
Let Y be the outcome variable, and we can identify:

α̂1t = Y1t −
J+1∑
i=2

W∗
jYjt, t = T1 (1)

α̂1t estimates the average treatment effect on the treated unit J = 1. Y1t and
∑J+1

i=2 W∗
jYjt

are the outcomes of the treated unit and its synthetic control counterfactual in the post-
intervention period.
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Appendix B Trends of Pollutants
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Appendix C Treatment Effect on Each Pollutant
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Note:
COD: ATT = 0.55 (1%) (S.E. = 2.38, p-value = 0.82)
NH3-N: ATT = 4.26 (38%) (S.E. = 1.30, p-value = 0.00)
Total Phosphorus: ATT = 0.50 (35%) (S.E. = 0.19, p-value = 0.02)
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Appendix D In-place Placebo Test of Pollutants
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Figure D1: COD

Figure D2: NH3-N

Figure D3: TP
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Appendix E In-time Placebo Test of Pollutants
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